首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2220篇
  免费   671篇
  国内免费   1368篇
测绘学   38篇
大气科学   2185篇
地球物理   855篇
地质学   623篇
海洋学   136篇
天文学   17篇
综合类   93篇
自然地理   312篇
  2024年   9篇
  2023年   65篇
  2022年   92篇
  2021年   133篇
  2020年   136篇
  2019年   157篇
  2018年   157篇
  2017年   159篇
  2016年   139篇
  2015年   176篇
  2014年   195篇
  2013年   362篇
  2012年   195篇
  2011年   182篇
  2010年   149篇
  2009年   189篇
  2008年   179篇
  2007年   244篇
  2006年   237篇
  2005年   201篇
  2004年   145篇
  2003年   121篇
  2002年   101篇
  2001年   76篇
  2000年   74篇
  1999年   59篇
  1998年   62篇
  1997年   53篇
  1996年   34篇
  1995年   38篇
  1994年   37篇
  1993年   23篇
  1992年   16篇
  1991年   15篇
  1990年   11篇
  1989年   7篇
  1988年   13篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有4259条查询结果,搜索用时 15 毫秒
941.
利用EOF方法分析了1951~2008年间西太平洋湍动热通量的时空特征,并探讨了中国夏季降水异常与同期西太平洋潜热通量时空格局的联系.结果显示,西太平洋潜热和感热通量距平场具有较相似的空间分布以及显著的年际变化,但潜热通量的变化幅度较感热通量大;潜热通量距平场的空间变化存在明显季节差异.冬季潜热通量变化的显著区域位于黑潮流域,而夏季则见于西太平洋暖池区.冬、夏季潜热通量除了具有准4a振荡周期外,还存在着明显的线性增强的长期变化趋势.进一步分析表明,夏季西太平洋潜热通量变异主要存在着偶极型、同一型和三极子型模态,其时间系数分别具有显著的准4a、准2a和29a的周期变化,它们分别对应着不同的中国夏季降水量异常的分布,而大范围的潜热通量负异常则与中国江淮流域大部和华北北部地区的降水偏多相对应.这为中国降水量的异常及机理研究提供了必要基础.  相似文献   
942.
The Orange Estuary lost 27% (276 ha) of its wetland area near the mouth as a result of bad management practices during the 1980s. The salt marsh has been unable to recover over the last 20 years because of the persistently high soil and groundwater salinity. In 2006, a 1 in 5 year flood occurred that completely covered the desertified salt marsh and floodplain with freshwater. The flood was followed by an above average (>45 mm) winter rainfall. Soil and groundwater sampled in April and August 2004 were compared with 2006 data to quantify the impact of the flood and rainfall event. It was hypothesised that the two freshwater events would significantly reduce the soil and groundwater salinity. However, the results showed no significant difference in sediment electrical conductivity throughout the soil profile over the four sampling periods. Soil moisture and organic content however increased significantly after these events in the surface soil layer. The flood deposited silt and scoured sand from the surface layers in significant quantities. The depth to groundwater in the desertified marsh retained a similar pattern after the flood despite 15 cm changes in depth in places. In 2004 a clear groundwater electrical conductivity gradient was present extending from the less saline north part of the marsh (0–15 mS cm−1) to the central part (120–135 mS cm−1) and decreasing again towards the south (60–75 mS cm−1). The flood served to even out the groundwater salinity across the desertified marsh (60–90 mS cm−1). The flood and high rainfall had a limited impact on the soil and groundwater characteristics. The few significant changes that were recorded were mostly restricted to the surface soil layers and on a small spatial scale. The rainfall did however create numerous pools of low salinity (<60 mS cm−1) water on the marsh surface that provided a brief opportunity for salt marsh seeds to germinate. A further benefit of the flood was the increased tidal reach into the desertified marsh importing freshwater from the river mouth and exporting salt. Despite these responses it is unlikely that the hypersaline salt marsh will revegetate naturally. Human intervention is needed to ensure the rehabilitation of this important Ramsar site.  相似文献   
943.
Abstract

Modelling and prediction of hydrological processes (e.g. rainfall–runoff) can be influenced by discontinuities in observed data, and one particular case may arise when the time scale (i.e. resolution) is coarse (e.g. monthly). This study investigates the application of catastrophe theory to examine its suitability to identify possible discontinuities in the rainfall–runoff process. A stochastic cusp catastrophe model is used to study possible discontinuities in the monthly rainfall–runoff process at the Aji River basin in Azerbaijan, Iran. Monthly-averaged rainfall and flow data observed over a period of 20 years (1981–2000) are analysed using the Cuspfit program. In this model, rainfall serves as a control variable and runoff as a behavioural variable. The performance of this model is evaluated using four measures: correlation coefficient, log-likelihood, Akaike information criterion (AIC) and Bayesian information criterion (BIC). The results indicate the presence of discontinuities in the rainfall–runoff process, with a significant sudden jump in flow (cusp signal) when rainfall reaches a threshold value. The performance of the model is also found to be better than that of linear and logistic models. The present results, though preliminary, are promising in the sense that catastrophe theory can play a possible role in the study of hydrological systems and processes, especially when the data are noisy.

Citation Ghorbani, M. A., Khatibi, R., Sivakumar, B. & Cobb, L. (2010) Study of discontinuities in hydrological data using catastrophe theory. Hydrol. Sci. J. 55(7), 1137–1151.  相似文献   
944.
Abstract

Rainfall is the most important input parameter for water resource planning and hydrological studies because flood risk assessment, rainfall harvesting and runoff estimation depend on the rainfall distribution within a region. Due to practical and economic factors, it is not possible to site rainfall stations everywhere, so representative rainfall stations are sited at specific locations. Rainfall distribution is then estimated from such stations. In this study, rainfall distribution in the southwestern region of Saudi Arabia was estimated using kriging, co-kriging and inverse distance weighted (IDW) methods. Historical records of rainfall from 47 stations for the period 1965–2010 and the altitude of these stations were used. The study shows that co-kriging is a better interpolator than the kriging and IDW methods, with a better correlation between actual and estimated monthly average rainfall for the region.  相似文献   
945.
ABSTRACT

A hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed based on the combined concept of Clark’s unit hydrograph and its spatial decomposition methods, incorporating refined spatially variable flow dynamics to implement hydrological simulation for spatially distributed rainfall–runoff flow. In Distributed-Clark, the Soil Conservation Service (SCS) curve number method is utilized to estimate spatially distributed runoff depth and a set of separated unit hydrographs is used for runoff routing to obtain a direct runoff flow hydrograph. Case studies (four watersheds in the central part of the USA) using spatially distributed (Thiessen polygon-based) rainfall data of storm events were used to evaluate the model performance. Results demonstrate relatively good fit to observed streamflow, with a Nash-Sutcliffe efficiency (ENS) of 0.84 and coefficient of determination (R2) of 0.86, as well as a better fit in comparison with outputs of spatially averaged rainfall data simulations for two models including HEC-HMS.  相似文献   
946.
Abstract

Abstract There is an urgent need for an integrated surface water and groundwater modelling tool that is suitable for southern African conditions and can be applied at various basin scales for broad strategic water resource planning purposes. The paper describes two new components (recharge and groundwater discharge) that have been added to an existing monthly time-step rainfall–runoff model that is widely used in the southern African subcontinent. The new components are relatively simple, consistent with the existing model formulation, but based on accepted groundwater flow principles and well understood groundwater parameters. The application of the revised model on two basins in southern Africa with quite different baseflow characteristics has demonstrated that the new components have a great deal of potential, even if the improvement is only to be able to simulate the groundwater baseflow component of total runoff more explicitly. More comprehensive testing and comparison of the results with existing groundwater and geohydrological data is required, while some extensions to the new components need to be considered to ensure that the model can be considered applicable to a wide range of basin and climate types.  相似文献   
947.
以青藏高原地区为研究背景,以评估水文模型在该区的影响因素、改善条件及其整体适应性为研究目标,利用GRACE重力卫星对比水文模型模拟的陆地水变化,以及地面气象实测数据对比降雨与温度两项重要指标,采用相关与误差分析法评价水文模型输入参数,将其作为模型预测数据与实际观测数据进行对比分析。结果表明,GLDAS/Noah各项指标与GRACE更为相近,降雨与气温数据除夏冬两季存在幅值差异外,整体上周年幅值与相位都存在较高NSE系数,表明GLDAS模型的降雨及气温输入参数与地面观测数据有较高的一致性。  相似文献   
948.
Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900–2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = −0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
949.
In semi‐arid Kenya, episodes of agricultural droughts of varying severity and duration occur. The occurrence of these agricultural droughts is associated with seasonal rainfall variability and can be reflected by seasonal soil moisture deficits that significantly affect crop performance and yield. The objective of this study was to stochastically simulate the behaviour of dry and wet spells and rainfall amounts in Iiuni watershed, Kenya. The stochastic behaviour of the longest dry and wet spells (runs) and largest rainfall amounts were simulated using a Markov (order 1) model. There were eight raingauge stations within the watershed. The entire analysis was carried out using probability parameters, i.e. mean, variance, simple and conditional probabilities of dry and rain days. An analysis of variance test (ANOVA ) was used to establish significant differences in rainfall characteristics between the eight stations. An analysis of the number of rain days and rainfall amount per rain day was done on a monthly basis to establish the distribution and reliability of seasonal rainfall. The graphic comparison of simulated cumulative distribution functions (Cdfs) of the longest spells and largest rainfall amounts showed Markovian dependence or persistence. The longest dry spells could extend to 24 days in the long rainy season and 12 in the short rainy season. At 50% (median) probability level, the largest rainfall amounts were 91 mm for the long rainy season and 136 mm for the short rainy season. The short rains were more reliable for crop production than the long rains. The Markov model performed well and gave adequate simulations of the spells and rainfall amounts under semi‐arid conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
950.
In this work, the multifractal properties of hourly rainfall data recorded at a location in Southern Spain have been related to the scale properties of the corresponding intensity–duration–frequency (IDF) curves. Four parametric models for the IDF curves have been fitted to the quantiles of rainfall obtained using the generalized Pareto frequency distribution function with the extreme data series obtained for the same place. The scaling of the rainfall intensity moments has been analysed, and the empirical moments scaling exponent function has been obtained. The corresponding values of q1 and γ1 have been empirical and theoretically calculated and compared with some characteristics of the different IDF models. Thus, the scaling behaviour of IDF curves has been analysed, and the best model has been selected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号